|  Help  |  About  |  Contact Us

Publication : Disrupted control of origin activation compromises genome integrity upon destabilization of Polε and dysfunction of the TRP53-CDKN1A/P21 axis.

First Author  Borel V Year  2022
Journal  Cell Rep Volume  39
Issue  9 Pages  110871
PubMed ID  35649380 Mgi Jnum  J:326147
Mgi Id  MGI:7294027 Doi  10.1016/j.celrep.2022.110871
Citation  Borel V, et al. (2022) Disrupted control of origin activation compromises genome integrity upon destabilization of Polepsilon and dysfunction of the TRP53-CDKN1A/P21 axis. Cell Rep 39(9):110871
abstractText  The maintenance of genome stability relies on coordinated control of origin activation and replication fork progression. How the interplay between these processes influences human genetic disease and cancer remains incompletely characterized. Here we show that mouse cells featuring Polepsilon instability exhibit impaired genome-wide activation of DNA replication origins, in an origin-location-independent manner. Strikingly, Trp53 ablation in primary Polepsilon hypomorphic cells increased Polepsilon levels and origin activation and reduced DNA damage in a transcription-dependent manner. Transcriptome analysis of primary Trp53 knockout cells revealed that the TRP53-CDKN1A/P21 axis maintains appropriate levels of replication factors and CDK activity during unchallenged S phase. Loss of this control mechanism deregulates origin activation and perturbs genome-wide replication fork progression. Thus, while our data support an impaired origin activation model for genetic diseases affecting CMG formation, we propose that loss of the TRP53-CDKN1A/P21 tumor suppressor axis induces inappropriate origin activation and deregulates genome-wide fork progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression