|  Help  |  About  |  Contact Us

Publication : Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARα.

First Author  Horscroft JA Year  2019
Journal  FASEB J Volume  33
Issue  6 Pages  7563-7577
PubMed ID  30870003 Mgi Jnum  J:291903
Mgi Id  MGI:6447029 Doi  10.1096/fj.201900067R
Citation  Horscroft JA, et al. (2019) Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARalpha. FASEB J 33(6):7563-7577
abstractText  Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)alpha expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARalpha-dependent manner. Wild-type (WT) mice and mice without PPARalpha (Ppara(-/-)) were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO3 for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O2) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% (P < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not Ppara(-/-) mice, indicating a PPARalpha-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not Ppara(-/-) mice. Our findings indicate that PPARalpha plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARalpha.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression