|  Help  |  About  |  Contact Us

Publication : Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle.

First Author  Nöhammer C Year  2003
Journal  Lab Invest Volume  83
Issue  2 Pages  259-69
PubMed ID  12594240 Mgi Jnum  J:82220
Mgi Id  MGI:2651780 Doi  10.1097/01.lab.0000053916.61772.ca
Citation  Nohammer C, et al. (2003) Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. Lab Invest 83(2):259-69
abstractText  Free fatty acids (FFA) are liberated from triglyceride-rich lipoproteins by lipoprotein lipase (LPL) and are considered to be a principal energy source for the heart. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of FFA catabolism. To investigate its role in cardiac muscle metabolism, transgenic mice overexpressing LPL in skeletal and cardiac muscle were bred on a PPARalpha knockout background. Fifty-five percent of male animals lacking PPARalpha and overexpressing LPL died within 4 months after birth. In contrast, females of this genotype stayed alive. Deceased animals exhibited cardiopulmonary congestion but had no increase of neutral lipids in the heart. Changes in plasma glucose, FFA, lactate, and triglycerides did not clearly account for gender-specific differences in mortality; however, they indicated a critical role for PPARalpha during fasting. Analysis of cardiac function revealed that in isolated perfused hearts, left ventricular developed pressure (a measure of contractility) was markedly lower in PPARalpha knockout mice overexpressing LPL compared with controls. Glucose uptake of isolated perfused hearts was significantly higher in PPARalpha knockout mice with both normal or increased LPL expression. However, uptake of FFA was not different among genotypes. In contrast, fasted FFA levels were significantly lower in cardiac muscle of PPARalpha knockout mice with normal LPL expression (-26%) and PPARalpha knockout mice overexpressing LPL (-38%) compared with controls. Our results indicate a critical role for PPARalpha in myocardial pump function and suggest that mouse models combining different genetic effects such as PPARalpha knockout mice overexpressing muscle LPL may be useful to study cardiomyopathies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression