|  Help  |  About  |  Contact Us

Publication : Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression.

First Author  Kanagawa M Year  2013
Journal  Hum Mol Genet Volume  22
Issue  15 Pages  3003-15
PubMed ID  23562821 Mgi Jnum  J:198535
Mgi Id  MGI:5496980 Doi  10.1093/hmg/ddt157
Citation  Kanagawa M, et al. (2013) Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet 22(15):3003-15
abstractText  A group of muscular dystrophies, dystroglycanopathy is caused by abnormalities in post-translational modifications of dystroglycan (DG). To understand better the pathophysiological roles of DG modification and to establish effective clinical treatment for dystroglycanopathy, we here generated two distinct conditional knock-out (cKO) mice for fukutin, the first dystroglycanopathy gene identified for Fukuyama congenital muscular dystrophy. The first dystroglycanopathy model-myofiber-selective fukutin-cKO [muscle creatine kinase (MCK)-fukutin-cKO] mice-showed mild muscular dystrophy. Forced exercise experiments in presymptomatic MCK-fukutin-cKO mice revealed that myofiber membrane fragility triggered disease manifestation. The second dystroglycanopathy model-muscle precursor cell (MPC)-selective cKO (Myf5-fukutin-cKO) mice-exhibited more severe phenotypes of muscular dystrophy. Using an isolated MPC culture system, we demonstrated, for the first time, that defects in the fukutin-dependent modification of DG lead to impairment of MPC proliferation, differentiation and muscle regeneration. These results suggest that impaired MPC viability contributes to the pathology of dystroglycanopathy. Since our data suggested that frequent cycles of myofiber degeneration/regeneration accelerate substantial and/or functional loss of MPC, we expected that protection from disease-triggering myofiber degeneration provides therapeutic effects even in mouse models with MPC defects; therefore, we restored fukutin expression in myofibers. Adeno-associated virus (AAV)-mediated rescue of fukutin expression that was limited in myofibers successfully ameliorated the severe pathology even after disease progression. In addition, compared with other gene therapy studies, considerably low AAV titers were associated with therapeutic effects. Together, our findings indicated that fukutin-deficient dystroglycanopathy is a regeneration-defective disorder, and gene therapy is a feasible treatment for the wide range of dystroglycanopathy even after disease progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

0 Expression