First Author | Dobaczewski M | Year | 2010 |
Journal | Circ Res | Volume | 107 |
Issue | 3 | Pages | 418-28 |
PubMed ID | 20522804 | Mgi Jnum | J:175044 |
Mgi Id | MGI:5142199 | Doi | 10.1161/CIRCRESAHA.109.216101 |
Citation | Dobaczewski M, et al. (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107(3):418-28 |
abstractText | RATIONALE: Cardiac fibroblasts are key effector cells in the pathogenesis of cardiac fibrosis. Transforming growth factor (TGF)-beta/Smad3 signaling is activated in the border zone of healing infarcts and induces fibrotic remodeling of the infarcted ventricle contributing to the development of diastolic dysfunction. OBJECTIVE: The present study explores the mechanisms responsible for the fibrogenic effects of Smad3 by dissecting its role in modulating cardiac fibroblast phenotype and function. METHODS AND RESULTS: Smad3 null mice and corresponding wild-type controls underwent reperfused myocardial infarction protocols. Surprisingly, reduced collagen deposition in Smad3-/- infarcts was associated with increased infiltration with myofibroblasts. In vitro studies demonstrated that TGF-beta1 inhibited murine cardiac fibroblast proliferation; these antiproliferative effects were mediated via Smad3. Smad3-/- fibroblasts were functionally defective, exhibiting impaired collagen lattice contraction when compared with wild-type cells. Decreased contractile function was associated with attenuated TGF-beta-induced expression of alpha-smooth muscle actin. In addition, Smad3-/- fibroblasts had decreased migratory activity on stimulation with serum, and exhibited attenuated TGF-beta1-induced upregulation of extracellular matrix protein synthesis. Upregulation of connective tissue growth factor, an essential downstream mediator in TGF-beta-induced fibrosis, was in part dependent on Smad3. Connective tissue growth factor stimulation enhanced extracellular matrix protein expression by cardiac fibroblasts in a Smad3-independent manner. CONCLUSIONS: Disruption of Smad3 results in infiltration of the infarct with abundant hypofunctional fibroblasts that exhibit impaired myofibroblast transdifferentiation, reduced migratory potential, and suppressed expression of fibrosis-associated genes. |