First Author | Baross-Francis A | Year | 2001 |
Journal | Oncogene | Volume | 20 |
Issue | 5 | Pages | 619-25 |
PubMed ID | 11313994 | Mgi Jnum | J:68922 |
Mgi Id | MGI:1933705 | Doi | 10.1038/sj.onc.1204138 |
Citation | Baross-Francis A, et al. (2001) Elevated mutant frequencies and increased C : G-->T : A transitions in Mlh1-/- versus Pms2-/- murine small intestinal epithelial cells. Oncogene 20(5):619-25 |
abstractText | Mutations in DNA mismatch repair (MMR) genes are associated with increased genomic instability and susceptibility to cancer. Mice rendered deficient in either Mlh1 or Pms2 as a result of gene targeting are prone to tumorigenesis, particularly, lymphomas. In addition, although Mlh1-/- mice also develop small intestinal adenomas and adenocarcinomas, Pms2-/- animals remain free of such tumors. To establish whether this phenotypic dichotomy might be associated with a quantitative and/or qualitative difference in genomic instability in these mice, we determined small intestinal epithelial cell DNA mutant frequency and mutation spectrum using a transgenic lambda-phage lacI reporter system. Mutant frequencies obtained from both Mlh1-/- and Pms2-/- mice revealed elevations of 18- and 13-fold, respectively, as compared to their wild-type littermates. Interestingly, we found that C : G-->T : A transitions were significantly elevated in Mlh1-/- mice, accounting in large measure for the 1.5-fold lacI mutant frequency increase seen in these animals. We hypothesize that the increased level of C : G-->T : A mutations may explain, in part, why Mlh1-/- mice, but not Pms2-/- mice, develop small intestinal tumors. Furthermore, the difference in the lacI mutational spectrum of Mlh1-/- and Pms2-/- mice suggests that other MutL-like heterodimers may play important roles in the repair of G : T mispairs arising within murine small intestinal epithelial cells. |