|  Help  |  About  |  Contact Us

Publication : Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice.

First Author  Cristina C Year  2005
Journal  Endocrinology Volume  146
Issue  7 Pages  2952-62
PubMed ID  15817666 Mgi Jnum  J:129824
Mgi Id  MGI:3770218 Doi  10.1210/en.2004-1445
Citation  Cristina C, et al. (2005) Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology 146(7):2952-62
abstractText  Vascular endothelial growth factor (VEGF)-A is an important angiogenic cytokine in cancer and pathological angiogenesis and has been related to the antiangiogenic activity of dopamine in endothelial cells. We investigated VEGF expression, localization, and function in pituitary hyperplasia of dopamine D2 receptor (D2R)-knockout female mice. Pituitaries from knockout mice showed increased protein and mRNA VEGF-A expression when compared with wild-type mice. In wild-type mice, prolonged treatment with the D2R antagonist, haloperidol, enhanced pituitary VEGF expression and prolactin release, suggesting that dopamine inhibits pituitary VEGF expression. VEGF expression was also increased in pituitary cells from knockout mice, even though these cells proliferated less in vitro when compared with wild-type cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr azolium proliferation assay, proliferating cell nuclear antigen expression, and [(3)H]thymidine incorporation. In contrast to other animal models, estrogen did not increase pituitary VEGF protein and mRNA expression and lowered serum prolactin secretion in vivo and in vitro in both genotypes. VEGF (10 and 30 ng/ml) did not modify pituitary cell proliferation in either genotype and increased prolactin secretion in vitro in estrogen-pretreated cells of both genotypes. But conditioned media from D2R(-/-) cells enhanced human umbilical vein cell proliferation, and this effect could be partially inhibited by an anti-VEGF antiserum. Finally, using dual-labeling immunofluorescence and confocal laser microscopy, we found that in the hyperplastic pituitaries, VEGF-A was mostly present in follicle-stellate cells. In conclusion, pituitary VEGF expression is under dopaminergic control, and even though VEGF does not promote pituitary cellular proliferation in vitro, it may be critical for pituitary angiogenesis through paracrine actions in the D2R knockout female mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression