|  Help  |  About  |  Contact Us

Publication : Multiple roles of integrin-α3 at the neuromuscular junction.

First Author  Ross JA Year  2017
Journal  J Cell Sci Volume  130
Issue  10 Pages  1772-1784
PubMed ID  28386022 Mgi Jnum  J:251846
Mgi Id  MGI:5924694 Doi  10.1242/jcs.201103
Citation  Ross JA, et al. (2017) Multiple roles of integrin-alpha3 at the neuromuscular junction. J Cell Sci 130(10):1772-1784
abstractText  The neuromuscular junction (NMJ) is the synapse between motoneurons and skeletal muscle, and is responsible for eliciting muscle contraction. Neurotransmission at synapses depends on the release of synaptic vesicles at sites called active zones (AZs). Various proteins of the extracellular matrix are crucial for NMJ development; however, little is known about the identity and functions of the receptors that mediate their effects. Using genetically modified mice, we find that integrin-alpha3 (encoded by Itga3), an adhesion receptor at the presynaptic membrane, is involved in the localisation of AZ components and efficient synaptic vesicle release. Integrin-alpha3 also regulates integrity of the synapse - mutant NMJs present with progressive structural changes and upregulated autophagy, features commonly observed during ageing and in models of neurodegeneration. Unexpectedly, we find instances of nerve terminal detachment from the muscle fibre; to our knowledge, this is the first report of a receptor that is required for the physical anchorage of pre- and postsynaptic elements at the NMJ. These results demonstrate multiple roles of integrin-alpha3 at the NMJ, and suggest that alterations in its function could underlie defects that occur in neurodegeneration or ageing.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

0 Expression