|  Help  |  About  |  Contact Us

Publication : Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses.

First Author  Minichiello L Year  1998
Journal  Neuron Volume  21
Issue  2 Pages  335-45
PubMed ID  9728915 Mgi Jnum  J:49472
Mgi Id  MGI:1277517 Doi  10.1016/s0896-6273(00)80543-7
Citation  Minichiello L, et al. (1998) Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21(2):335-45
abstractText  Neurotrophins are a family of soluble ligands that promote the survival and differentiation of peripheral and central neurons and regulate synaptic function. The two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), bind and activate a single high-affinity receptor, TrkB. Experiments in cell culture have revealed that an intact Shc adaptor binding site on TrkB and subsequent activation of the Ras/MAPK pathway are important for neuronal survival and neurite outgrowth. To elucidate the intracellular signaling pathways that mediate the diverse effects of BDNF and NT4 in vivo, we have mutated in the mouse germline the Shc binding site in the trkB gene. This trkB(shc) mutation revealed distinctive responses to BDNF and NT4. While nearly all NT4-dependent sensory neurons were lost in trkB(shc/shc) mutant mice, BDNF-dependent neurons were only modestly affected. Activation of MAP kinases and in vitro survival of cultured trkB(shc/shc) neurons were reduced in response to both neurotrophins, with NT4 being less potent than BDNF, suggesting differential activation of TrkB by the two ligands. Moreover, while the Ras/MAPK pathway is required for in vitro differentiation of neuronal cells, trkB(shc/shc) mutant mice do not show any defects in BDNF-dependent differentiation of CNS neurons or in the function of sensory neurons that mediate innocuous touch.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression