|  Help  |  About  |  Contact Us

Publication : Imbalanced Activation of Wnt-/β-Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation.

First Author  Koch PS Year  2021
Journal  Front Physiol Volume  12
Pages  722394 PubMed ID  34658910
Mgi Jnum  J:312664 Mgi Id  MGI:6786365
Doi  10.3389/fphys.2021.722394 Citation  Koch PS, et al. (2021) Imbalanced Activation of Wnt-/beta-Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation. Front Physiol 12:722394
abstractText  Endothelial wingless-related integration site (Wnt)-/beta-catenin signaling is a key regulator of the tightly sealed blood-brain barrier. In the hepatic vascular niche angiokine-mediated Wnt signaling was recently identified as an important regulator of hepatocyte function, including the determination of final adult liver size, liver regeneration, and metabolic liver zonation. Within the hepatic vasculature, the liver sinusoidal endothelial cells (LSECs) are morphologically unique and functionally specialized microvascular endothelial cells (ECs). Pathological changes of LSECs are involved in chronic liver diseases, hepatocarcinogenesis, and liver metastasis. To comprehensively analyze the effects of endothelial Wnt-/beta-catenin signaling in the liver, we used endothelial subtype-specific Clec4g-iCre mice to generate hepatic ECs with overexpression of Ctnnb1. In the resultant Clec4g-iCre (tg/wt) ;Ctnnb1(Ex3) (fl/wt) (Ctnnb1 (OE-EC) ) mice, activation of endothelial Wnt-/beta-catenin signaling resulted in sinusoidal transdifferentiation with disturbed endothelial zonation, that is, loss of midzonal LSEC marker lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve1) and enrichment of continuous EC genes, such as cluster of differentiation (CD)34 and Apln. Notably, gene set enrichment analysis revealed overrepresentation of brain endothelial transcripts. Activation of endothelial Wnt-/beta-catenin signaling did not induce liver fibrosis or alter metabolic liver zonation, but Ctnnb1 (OE-EC) mice exhibited significantly increased plasma triglyceride concentrations, while liver lipid content was slightly reduced. Ctnnb1 overexpression in arterial ECs of the heart has been reported previously to cause cardiomyopathy. As Clec4g-iCre is active in a subset of cardiac ECs, it was not unexpected that Ctnnb1 (OE-EC) mice showed reduced overall survival and cardiac dysfunction. Altogether, balanced endothelial Wnt-/beta-catenin signaling in the liver is required for normal LSEC differentiation and for maintenance of normal plasma triglyceride levels.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression