|  Help  |  About  |  Contact Us

Publication : DNA Damage Signaling-Induced Cancer Cell Reprogramming as a Driver of Tumor Relapse.

First Author  Filipponi D Year  2019
Journal  Mol Cell Volume  74
Issue  4 Pages  651-663.e8
PubMed ID  30954402 Mgi Jnum  J:275675
Mgi Id  MGI:6313630 Doi  10.1016/j.molcel.2019.03.002
Citation  Filipponi D, et al. (2019) DNA Damage Signaling-Induced Cancer Cell Reprogramming as a Driver of Tumor Relapse. Mol Cell 74(4):651-663.e8
abstractText  Accumulating evidence supports the role of the DNA damage response (DDR) in the negative regulation of tumorigenesis. Here, we found that DDR signaling poises a series of epigenetic events, resulting in activation of pro-tumorigenic genes but can go as far as reactivation of the pluripotency gene OCT4. Loss of DNA methylation appears to be a key initiating event in DDR-dependent OCT4 locus reactivation although full reactivation required the presence of a driving oncogene, such as Myc and macroH2A downregulation. Using genetic-lineage-tracing experiments and an in situ labeling approach, we show that DDR-induced epigenetic reactivation of OCT4 regulates the resistance to chemotherapy and contributes to tumor relapse both in mouse and primary human cancers. In turn, deletion of OCT4 reverses chemoresistance and delays the relapse. Here, we uncovered an unexpected tumor-promoting role of DDR in cancer cell reprogramming, providing novel therapeutic entry points for cancer intervention strategies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

0 Expression