| First Author | Choi CI | Year | 2014 |
| Journal | Exp Mol Med | Volume | 46 |
| Pages | e93 | PubMed ID | 24787734 |
| Mgi Jnum | J:209563 | Mgi Id | MGI:5568132 |
| Doi | 10.1038/emm.2014.14 | Citation | Choi CI, et al. (2014) Simultaneous deletion of floxed genes mediated by CaMKIIalpha-Cre in the brain and in male germ cells: application to conditional and conventional disruption of Goalpha. Exp Mol Med 46:e93 |
| abstractText | The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIalpha) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIalpha-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice generated by crossing CaMKIIalpha-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIalpha-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Delta)) without inheriting the Cre transgene. The Gnao(Delta/Delta) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIalpha-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIalpha-Cre mice as breeding pairs. |