|  Help  |  About  |  Contact Us

Publication : The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf.

First Author  Eshkar-Oren I Year  2009
Journal  Development Volume  136
Issue  8 Pages  1263-72
PubMed ID  19261698 Mgi Jnum  J:147285
Mgi Id  MGI:3840025 Doi  10.1242/dev.034199
Citation  Eshkar-Oren I, et al. (2009) The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136(8):1263-72
abstractText  Limb development constitutes a central model for the study of tissue and organ patterning; yet, the mechanisms that regulate the patterning of limb vasculature have been left understudied. Vascular patterning in the forming limb is tightly regulated in order to ensure sufficient gas exchange and nutrient supply to the developing organ. Once skeletogenesis is initiated, limb vasculature undergoes two seemingly opposing processes: vessel regression from regions that undergo mesenchymal condensation; and vessel morphogenesis. During the latter, vessels that surround the condensations undergo an extensive rearrangement, forming a stereotypical enriched network that is segregated from the skeleton. In this study, we provide evidence for the centrality of the condensing mesenchyme of the forming skeleton in regulating limb vascular patterning. Both Vegf loss- and gain-of-function experiments in limb bud mesenchyme firmly established VEGF as the signal by which the condensing mesenchyme regulates the vasculature. Normal vasculature observed in limbs where VEGF receptors Flt1, Flk1, Nrp1 and Nrp2 were blocked in limb bud mesenchyme suggested that VEGF, which is secreted by the condensing mesenchyme, regulates limb vasculature via a direct long-range mechanism. Finally, we provide evidence for the involvement of SOX9 in the regulation of Vegf expression in the condensing mesenchyme. This study establishes Vegf expression in the condensing mesenchyme as the mechanism by which the skeleton patterns limb vasculature.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

36 Bio Entities

0 Expression