First Author | He S | Year | 2009 |
Journal | J Clin Invest | Volume | 119 |
Issue | 8 | Pages | 2304-16 |
PubMed ID | 19620784 | Mgi Jnum | J:152533 |
Mgi Id | MGI:4359098 | Doi | 10.1172/JCI38289 |
Citation | He S, et al. (2009) A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J Clin Invest 119(8):2304-16 |
abstractText | Massive liver resection and small-for-size liver transplantation pose a therapeutic challenge, due to increased susceptibility of the remnant/graft to ischemia reperfusion injury (IRI) and impaired regeneration. We investigated the dual role of complement in IRI versus regeneration in mice. Complement component 3 (C3) deficiency and complement inhibition with complement receptor 2-complement receptor 1-related protein y (CR2-Crry, an inhibitor of C3 activation) provided protection from hepatic IRI, and while C3 deficiency also impaired liver regeneration following partial hepatectomy (PHx), the effect of CR2-Crry in this context was dose dependent. In a combined model of IRI and PHx, either C3 deficiency or high-dose CR2-Crry resulted in steatosis, severe hepatic injury, and high mortality, whereas low-dose CR2-Crry was protective and actually increased hepatic proliferative responses relative to control mice. Reconstitution experiments revealed an important role for the C3a degradation product acylation-stimulating protein (ASP) in the balance between inflammation/injury versus regeneration. Furthermore, liver regeneration was dependent on the putative ASP receptor, C5L2. Several potential mechanisms of hepatoprotection and recovery were identified in mice treated with low-dose CR2-Crry, including enhanced IL-6 expression and STAT3 activation, reduced hepatic ATP depletion, and attenuated oxidative stress. These data indicate that a threshold of complement activation, involving ASP and C5L2, promotes liver regeneration and suggest a balance between complement-dependent injury and regeneration. |