|  Help  |  About  |  Contact Us

Publication : CTCF maintains differential methylation at the Igf2/H19 locus.

First Author  Schoenherr CJ Year  2003
Journal  Nat Genet Volume  33
Issue  1 Pages  66-9
PubMed ID  12461525 Mgi Jnum  J:81888
Mgi Id  MGI:2450195 Doi  10.1038/ng1057
Citation  Schoenherr CJ, et al. (2003) CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33(1):66-9
abstractText  Genomic imprinting relies on establishing and maintaining the parental-specific methylation of DNA elements that control the differential expression of maternal and paternal alleles. Although the essential DNA methyltransferases have been discovered, proteins that regulate the sequence-specific establishment and maintenance of allelic methylation have not been identified. One candidate regulator of methylation, the zinc-finger protein CTCF, binds to the imprinting control region (ICR) of the genes Igf2 (encoding insulin-like growth factor 2) and H19 (fetal liver mRNA; refs. 1,2). The unmethylated maternal ICR is a chromatin boundary that prevents distant enhancers from activating Igf2 (refs. 3-6). In vitro experiments have suggested that CTCF mediates boundary activity of the maternal ICR, and that methylation of the paternal ICR abolishes this activity by preventing CTCF binding. Using mice with point mutations in all four CTCF sites in the ICR, we show that maternally transmitted mutant ICRs in neonatal mice acquire a substantial but heterogeneous degree of methylation. Mutant ICRs in oocytes and blastocysts are not methylated, however, indicating that binding of CTCF is not required to establish the unmethylated ICR during oogenesis. We also show that the mutant ICR lacks enhancer-blocking activity, as the expression of Igf2 is activated on mutant maternal chromosomes. Conversely, maternal H19 expression is reduced, suggesting a positive role for CTCF in the transcription of that gene. This study constitutes the first in vivo demonstration of the multiple functions of CTCF in an ICR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression