|  Help  |  About  |  Contact Us

Publication : Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis.

First Author  Ouyang X Year  2005
Journal  Cancer Res Volume  65
Issue  15 Pages  6773-9
PubMed ID  16061659 Mgi Jnum  J:100775
Mgi Id  MGI:3589523 Doi  10.1158/0008-5472.CAN-05-1948
Citation  Ouyang X, et al. (2005) Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res 65(15):6773-9
abstractText  Despite the significance of oxidative damage for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of tissues to oxidative stress are not well-understood. We now report a link between loss of protection against oxidative damage and loss-of-function of Nkx3.1, a homeobox gene that is known to be required for prostatic epithelial differentiation and suppression of prostate cancer. Using gene expression profiling, we find that Nkx3.1 mutant mice display deregulated expression of several antioxidant and prooxidant enzymes, including glutathione peroxidase 2 and 3 (GPx2 and GPx3), peroxiredoxin 6 (Prdx6), and sulfyhydryl oxidase Q6 (Qscn6). Moreover, the formation of prostatic intraepithelial neoplasia in these mutant mice is associated with increased oxidative damage of DNA, as evident by increased levels of 8-hydroxy-2'-deoxyguanosine. We further show that progression to prostate adenocarcinoma, as occurs in compound mutant mice lacking Nkx3.1 as well as the Pten tumor suppressor, is correlated with a further deregulation of antioxidants, including superoxide dismutase enzymes, and more profound accumulations of oxidative damage to DNA and protein, the latter manifested by increased levels of 4-hydroxynonenal. We propose that the essential role of Nkx3.1 in maintaining the terminally differentiated state of the prostate epithelium provides protection against oxidative damage and, thereby, suppression of prostate cancer. Thus, our findings provide a molecular link between a gene whose inactivation is known to be involved in prostate carcinogenesis, namely Nkx3.1, and oxidative damage of the prostatic epithelium.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression