First Author | Cramer DE | Year | 2006 |
Journal | Blood | Volume | 107 |
Issue | 2 | Pages | 835-40 |
PubMed ID | 16179370 | Mgi Jnum | J:126628 |
Mgi Id | MGI:3761759 | Doi | 10.1182/blood-2005-07-2705 |
Citation | Cramer DE, et al. (2006) Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 107(2):835-40 |
abstractText | Myelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2(-/-) mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast beta-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3(+) HPC is suggested. Soluble yeast beta-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and beta-glucan in the restoration of hematopoiesis following injury. |