|  Help  |  About  |  Contact Us

Publication : Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1.

First Author  Muraoka RS Year  2003
Journal  Mol Cell Biol Volume  23
Issue  23 Pages  8691-703
PubMed ID  14612410 Mgi Jnum  J:87030
Mgi Id  MGI:2682987 Doi  10.1128/MCB.23.23.8691-8703.2003
Citation  Muraoka RS, et al. (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23(23):8691-703
abstractText  To determine if Neu is dominant over transforming growth factor beta (TGF-beta), we crossed mouse mammary tumor virus (MMTV)-Neu mice with MMTV-TGF-beta1(S223/225) mice expressing active TGF-beta1 in the mammary gland. Bigenic (NT) and Neu-induced mammary tumors developed with a similar latency. The bigenic tumors and their metastases were less proliferative than those occurring in MMTV-Neu mice. However, NT tumors exhibited less apoptosis and were more locally invasive and of higher histological grade. NT mice exhibited more circulating tumor cells and lung metastases than Neu mice, while NT tumors contained higher levels of phosphorylated (active) Smad2, Akt, mitogen-activated protein kinase (MAPK), and p38, as well as vimentin content and Rac1 activity in situ than tumors expressing Neu alone. Ex vivo, NT cells exhibited higher levels of P-Akt and P-MAPK than Neu cells. These were inhibited by the TGF-beta inhibitor-soluble TGF-beta type II receptor (TbetaRII:Fc), suggesting they were activated by autocrine TGF-beta. TGF-beta stimulated migration of Neu cells into surrounding matrix, while the soluble TGF-beta inhibitor abrogated motility and invasiveness of NT cells. These data suggest that (i) the antimitogenic and prometastatic effects of TGF-beta can exist simultaneously and (ii) Neu does not abrogate TGF-beta-mediated antiproliferative action but can synergize with TGF-beta in accelerating metastatic tumor progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression