| First Author | Subramanian V | Year | 2007 |
| Journal | Am J Physiol Heart Circ Physiol | Volume | 292 |
| Issue | 1 | Pages | H673-83 |
| PubMed ID | 16980342 | Mgi Jnum | J:119943 |
| Mgi Id | MGI:3703487 | Doi | 10.1152/ajpheart.00569.2006 |
| Citation | Subramanian V, et al. (2007) Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 292(1):H673-83 |
| abstractText | The purpose of this study was to investigate the role of osteopontin (OPN) in diabetic hearts. Diabetes was induced in wild-type (WT) and OPN knockout (KO) mice by using streptozotocin (150 mg/kg) injection. Left ventricular (LV) structural and functional remodeling was studied 30 and 60 days after induction of diabetes. Induction of diabetes increased OPN expression in cardiac myocytes. Heart weight-to-body weight ratio was increased in both diabetic (D) groups. Lung wet weight-to-dry weight ratio was increased only in the WT-D group. Peak left ventricular (LV) developed pressures measured using Langendorff perfusion analyses were reduced to a greater extent in WT-D versus KO-D group. LV end-diastolic pressure-volume curve exhibited a significant leftward shift in WT-D but not in KO-D group. LV end-diastolic diameter, percent fractional shortening, and the ratio of peak velocity of early and late filling (E/A wave) were significantly reduced in WT-D mice as analyzed by echocardiography. The increase in cardiac myocyte apoptosis and fibrosis was significantly higher in the WT-D group. Expression of atrial natriuretic peptide and transforming growth factor-beta1 was significantly increased in the WT-D group. Induction of diabetes increased protein kinase C (PKC) phosphorylation in both groups. However, phosphorylation of PKC-betaII was significantly higher in the WT-D group, whereas phosphorylation of PKC-zeta was significantly higher in the KO-D group. Levels of peroxisome proliferator-activated receptor-gamma were significantly decreased in the WT-D group but not in the KO-D group. Thus increased expression of OPN may play a deleterious role during streptozotocin-induced diabetic cardiomyopathy with effects on cardiac fibrosis, hypertrophy, and myocyte apoptosis. |