|  Help  |  About  |  Contact Us

Publication : Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice.

First Author  De Logu F Year  2019
Journal  J Clin Invest Volume  129
Issue  12 Pages  5424-5441
PubMed ID  31487269 Mgi Jnum  J:284102
Mgi Id  MGI:6388653 Doi  10.1172/JCI128022
Citation  De Logu F, et al. (2019) Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J Clin Invest 129(12):5424-5441
abstractText  Excessive alcohol consumption is associated with spontaneous burning pain, hyperalgesia, and allodynia. Although acetaldehyde has been implicated in the painful alcoholic neuropathy, the mechanism by which the ethanol metabolite causes pain symptoms is unknown. Acute ethanol ingestion caused delayed mechanical allodynia in mice. Inhibition of alcohol dehydrogenase (ADH) or deletion of transient receptor potential ankyrin 1 (TRPA1), a sensor for oxidative and carbonyl stress, prevented allodynia. Acetaldehyde generated by ADH in both liver and Schwann cells surrounding nociceptors was required for TRPA1-induced mechanical allodynia. Plp1-Cre Trpa1fl/fl mice with a tamoxifen-inducible specific deletion of TRPA1 in Schwann cells revealed that channel activation by acetaldehyde in these cells initiates a NADPH oxidase-1-dependent (NOX1-dependent) production of hydrogen peroxide (H2O2) and 4-hydroxynonenal (4-HNE), which sustains allodynia by paracrine targeting of nociceptor TRPA1. Chronic ethanol ingestion caused prolonged mechanical allodynia and loss of intraepidermal small nerve fibers in WT mice. While Trpa1-/- or Plp1-Cre Trpa1fl/fl mice did not develop mechanical allodynia, they did not show any protection from the small-fiber neuropathy. Human Schwann cells express ADH/TRPA1/NOX1 and recapitulate the proalgesic functions of mouse Schwann cells. TRPA1 antagonists might attenuate some symptoms of alcohol-related pain.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

0 Expression