|  Help  |  About  |  Contact Us

Publication : VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues.

First Author  Sekiguchi K Year  2019
Journal  Sci Rep Volume  9
Issue  1 Pages  7037
PubMed ID  31065021 Mgi Jnum  J:281588
Mgi Id  MGI:6357337 Doi  10.1038/s41598-019-43185-8
Citation  Sekiguchi K, et al. (2019) VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues. Sci Rep 9(1):7037
abstractText  Angiogenesis is critical in maintenance of endometrial tissues. Here, we examined the role of VEGF receptor 1 (VEGFR1) signaling in angiogenesis and tissue growth in an endometriosis model. Endometrial fragments were implanted into the peritoneal wall of mice, and endometrial tissue growth and microvessel density (MVD) were determined. Endometrial fragments from wild-type (WT) mice grew slowly with increased angiogenesis determined by CD31(+) MVD, peaking on Day 14. When tissues from WT mice were transplanted into VEGFR1 tyrosine kinase-knockout mice, implant growth and angiogenesis were suppressed on Day 14 compared with growth of WT implants in a WT host. The blood vessels in the implants were not derived from the host peritoneum. Immunostaining for VEGFR1 suggested that high numbers of VEGFR1(+) cells such as macrophages were infiltrated into the endometrial tissues. When macrophages were deleted with Clophosome N, both endometrial tissue growth and angiogenesis were significantly suppressed. Bone marrow chimera experiments revealed that growth and angiogenesis in endometrial implants were promoted by host bone marrow-derived VEGFR1(+)/CD11b(+) macrophages that accumulated in the implants, and secreted basic fibroblast growth factor (bFGF). A FGF receptor kinase inhibitor, PD173047 significantly reduced size of endometrial tissues and angiogenesis. VEGFR1 signaling in host-derived cells is crucial for growth and angiogenesis in endometrial tissue. Thus, VEGFR1 blockade is a potential treatment for endometriosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression