|  Help  |  About  |  Contact Us

Publication : Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice.

First Author  Csete D Year  2019
Journal  Front Immunol Volume  10
Pages  937 PubMed ID  31134061
Mgi Jnum  J:284399 Mgi Id  MGI:6381042
Doi  10.3389/fimmu.2019.00937 Citation  Csete D, et al. (2019) Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice. Front Immunol 10:937
abstractText  Syk is a non-receptor tyrosine kinase critically involved in signaling by various immunoreceptors including B-cell-receptors and activating Fc-receptors. We have previously shown that Syk also mediates immunoreceptor-like signals required for the in vitro development and function of osteoclasts. However, the perinatal lethality of Syk (-/-) mice precluded the analysis of the role of Syk in in vivo bone metabolism. To overcome that problem, we generated mice with osteoclast-specific (Syk (DeltaOC) ) or hematopoietic (Syk (DeltaHaemo) ) Syk deficiency by conditional deletion of Syk using Cre recombinase expressed under the control of the Ctsk or Vav1 promoter, respectively. Micro-CT analysis revealed increased bone trabecular density in both Syk (DeltaOC) and Syk (DeltaHaemo) mice, although hematopoietic Syk deficiency caused a more severe phenotype than osteoclast-specific Syk deficiency. Osteoclast-specific Syk deficiency reduced, whereas hematopoietic Syk deficiency completely blocked in vitro development of osteoclasts. Both interventions inhibited the resorptive activity of osteoclasts and osteoclast-specific gene expression. Kinetic analysis of Syk protein levels, Cre expression and the genomic deletion of the Syk (flox) allele revealed complete and early deletion of Syk from Syk (DeltaHaemo) osteoclasts whereas Syk was incompletely deleted at a later stage of osteoclast development from Syk (DeltaOC) cultures. Those results provide an explanation for the in vivo and in vitro difference between the Syk (DeltaOC) and Syk (DeltaHaemo) mutant strains and suggest late activation of, and incomplete target gene deletion upon, osteoclast-specific Cre expression driven by the Ctsk promoter. Taken together, our results indicate that Syk plays an indispensable role in osteoclast-mediated in vivo bone resorption and suggest that Syk-specific inhibitors may provide therapeutic benefit in inflammatory and other diseases characterized by excessive osteoclast-mediated bone resorption.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

0 Expression