|  Help  |  About  |  Contact Us

Publication : Activity-induced Ca<sup>2+</sup> signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y<sub>1</sub> receptors and regulates muscle fatigue.

First Author  Heredia DJ Year  2018
Journal  Elife Volume  7
PubMed ID  29384476 Mgi Jnum  J:256688
Mgi Id  MGI:6116724 Doi  10.7554/eLife.30839
Citation  Heredia DJ, et al. (2018) Activity-induced Ca(2+) signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue. Elife 7:e30839
abstractText  Perisynaptic glial cells respond to neural activity by increasing cytosolic calcium, but the significance of this pathway is unclear. Terminal/perisynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction that respond to nerve-derived substances such as acetylcholine and purines. Here, we provide genetic evidence that activity-induced calcium accumulation in neonatal TPSCs is mediated exclusively by one subtype of metabotropic purinergic receptor. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was more greatly exacerbated by exposure to high potassium than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in TPSCs regulate postsynaptic function and muscle fatigue by regulating perisynaptic potassium.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

17 Bio Entities

0 Expression