|  Help  |  About  |  Contact Us

Publication : Progressive genomic instability in the FVB/Kras(LA2) mouse model of lung cancer.

First Author  To MD Year  2011
Journal  Mol Cancer Res Volume  9
Issue  10 Pages  1339-45
PubMed ID  21807965 Mgi Jnum  J:205222
Mgi Id  MGI:5544385 Doi  10.1158/1541-7786.MCR-11-0219
Citation  To MD, et al. (2011) Progressive genomic instability in the FVB/Kras(LA2) mouse model of lung cancer. Mol Cancer Res 9(10):1339-45
abstractText  Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression