|  Help  |  About  |  Contact Us

Publication : sEH promotes macrophage phagocytosis and lung clearance of Streptococcus pneumoniae.

First Author  Li H Year  2021
Journal  J Clin Invest Volume  131
Issue  22 PubMed ID  34591792
Mgi Jnum  J:327212 Mgi Id  MGI:7328880
Doi  10.1172/JCI129679 Citation  Li H, et al. (2021) sEH promotes macrophage phagocytosis and lung clearance of Streptococcus pneumoniae. J Clin Invest 131(22):e129679
abstractText  Epoxyeicosatrienoic acids (EETs) have potent antiinflammatory properties. Hydrolysis of EETs by soluble epoxide hydrolase/ epoxide hydrolase 2 (sEH/EPHX2) to less active diols attenuates their antiinflammatory effects. Macrophage activation is critical to many inflammatory responses; however, the role of EETs and sEH in regulating macrophage function remains unknown. Lung bacterial clearance of Streptococcus pneumoniae was impaired in Ephx2-deficient (Ephx2-/-) mice and in mice treated with an sEH inhibitor. The EET receptor antagonist EEZE restored lung clearance of S. pneumoniae in Ephx2-/- mice. Ephx2-/- mice had normal lung Il1b, Il6, and Tnfa expression levels and macrophage recruitment to the lungs during S. pneumoniae infection; however, Ephx2 disruption attenuated proinflammatory cytokine induction, Tlr2 and Pgylrp1 receptor upregulation, and Ras-related C3 botulinum toxin substrates 1 and 2 (Rac1/2) and cell division control protein 42 homolog (Cdc42) activation in PGN-stimulated macrophages. Consistent with these observations, Ephx2-/- macrophages displayed reduced phagocytosis of S. pneumoniae in vivo and in vitro. Heterologous overexpression of TLR2 and peptidoglycan recognition protein 1 (PGLYRP1) in Ephx2-/- macrophages restored macrophage activation and phagocytosis. Human macrophage function was similarly regulated by EETs. Together, these results demonstrate that EETs reduced macrophage activation and phagocytosis of S. pneumoniae through the downregulation of TLR2 and PGLYRP1 expression. Defining the role of EETs and sEH in macrophage function may lead to the development of new therapeutic approaches for bacterial diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression