First Author | Guigon CJ | Year | 2009 |
Journal | Oncogene | Volume | 28 |
Issue | 4 | Pages | 509-17 |
PubMed ID | 18997818 | Mgi Jnum | J:145897 |
Mgi Id | MGI:3836245 | Doi | 10.1038/onc.2008.407 |
Citation | Guigon CJ, et al. (2009) PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene 28(4):509-17 |
abstractText | Inactivation and silencing of PTEN have been observed in multiple cancers, including follicular thyroid carcinoma. PTEN (phosphatase and tensin homologue deleted from chromosome 10) functions as a tumour suppressor by opposing the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Despite correlative data, how deregulated PTEN signalling leads to thyroid carcinogenesis is not known. Mice harbouring a dominant-negative mutant thyroid hormone receptor beta (TRbeta(PV/PV) mice) spontaneously develop follicular thyroid carcinoma and distant metastases similar to human cancer. To elucidate the role of PTEN in thyroid carcinogenesis, we generated TRbeta(PV/PV) mice haploinsufficient for Pten (TRbeta(PV/PV)Pten(+/-) mouse). PTEN deficiency accelerated the progression of thyroid tumour and increased the occurrence of metastasis spread to the lung in TRbeta(PV/PV)Pten(+/-) mice, thereby significantly reducing their survival as compared with TRbeta(PV/PV)Pten(+/+) mice. AKT activation was further increased by two-fold in TRbeta(PV/PV)Pten(+/-) mice thyroids, leading to increased activity of the downstream mammalian target of rapamycin (mTOR)-p70S6K signalling and decreased activity of the forkhead family member FOXO3a. Consistently, cyclin D1 expression was increased. Apoptosis was decreased as indicated by increased expression of nuclear factor-kappaB (NF-kappaB) and decreased caspase-3 activity in the thyroids of TRbeta(PV/PV)Pten(+/-) mice. Our results indicate that PTEN deficiency resulted in increased cell proliferation and survival in the thyroids of TRbeta(PV/PV)Pten(+/-) mice. Altogether, our study provides direct evidence to indicate that in vivo, PTEN is a critical regulator in the follicular thyroid cancer progression and invasiveness. |