|  Help  |  About  |  Contact Us

Publication : Gelsolin: a novel thyroid hormone receptor-beta interacting protein that modulates tumor progression in a mouse model of follicular thyroid cancer.

First Author  Kim CS Year  2007
Journal  Endocrinology Volume  148
Issue  3 Pages  1306-12
PubMed ID  17170101 Mgi Jnum  J:119236
Mgi Id  MGI:3701569 Doi  10.1210/en.2006-0923
Citation  Kim CS, et al. (2007) Gelsolin: a novel thyroid hormone receptor-beta interacting protein that modulates tumor progression in a mouse model of follicular thyroid cancer. Endocrinology 148(3):1306-12
abstractText  Follicular thyroid cancer (FTC) is known to metastasize to distant sites via hematogenous spread; however, the underlying pathways that contribute to metastasis remain unknown. Recent creation of a knockin mutant mouse that expresses a mutant thyroid hormone receptor-beta (TRbeta(PV/PV) mouse) that spontaneously develops thyroid cancer with metastasis similar to humans has provided new opportunities to study contributors to FTC metastasis. This study evaluates the role of gelsolin, an actin-regulatory protein, in modulating the metastatic potential of FTC. Gelsolin was previously found by cDNA microarray analysis to be down-regulated in TRbeta(PV/PV) mice as compared with wild-type mice. This study found an age-dependent reduction of gelsolin protein abundance in TRbeta(PV/PV) mice as tumorigenesis progressed. Knockdown of gelsolin by small interfering RNA resulted in increased tumor cell motility and increased gelsolin expression by histone deacetylase inhibitor (trichostatin A) led to decreased cell motility. Additional biochemical analyses demonstrated that gelsolin physically interacted with TRbeta1 or PV in vivo and in vitro. The interaction regions were mapped to the C terminus of gelsolin and the DNA binding domain of TR. The physical interaction of gelsolin with PV reduced its binding to actin, leading to disarrayed cytoskeletal architectures. These results suggest that PV-induced alteration of the actin/gelsolin cytoskeleton contributes to increased cell motility. Thus, the present study uncovered a novel PV-mediated oncogenic pathway that could contribute to the local tumor progression and metastatic potential of thyroid carcinogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression