First Author | Liu S | Year | 1999 |
Journal | J Clin Invest | Volume | 103 |
Issue | 2 | Pages | 207-13 |
PubMed ID | 9916132 | Mgi Jnum | J:52286 |
Mgi Id | MGI:1328725 | Doi | 10.1172/JCI4243 |
Citation | Liu S, et al. (1999) Hypoglycemia and impaired hepatic glucose production in mice with a deletion of the C/EBPbeta gene. J Clin Invest 103(2):207-13 |
abstractText | The transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) is enriched in liver and adipose tissue and controls the expression of a wide variety of genes coding for important metabolic pathways, including gluconeogenesis and lipid synthesis. To investigate the role of C/EBPbeta on glucose homeostasis, we studied mice with a targeted deletion of the gene for C/EBPbeta-/- mice. Adult C/EBPbeta-/- mice have hypoglycemia after an 18-hour fast, accompanied by lower hepatic glucose production (40% of that of wild-type mice), with no change in plasma insulin and a lower concentration of plasma free fatty acids (FFA). Glucagon infusion during a pancreatic clamp acutely stimulated hepatic glucose production by 38% in wild-type animals, with no change detected in C/EBPbeta-/- mice. Unexpectedly, both the basal and glucagon-stimulated hepatic cyclic adenosine monophosphate (cAMP) levels were lower in C/EBPbeta-/- mice, indicating an essential role for C/EBPbeta in controlling proximal signal transduction. Fasting hypoglycemia was associated with normal levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene expression, however net liver glycogenolysis was impaired in C/EBPbeta-/- mice. FFA release from isolated adipose tissue in response to epinephrine was 68% lower in C/EBPbeta-/- mice than in control animals; however, N6,O2'-dibutyryladenosine (Bt2) cAMP stimulated a twofold increase in FFA release in C/EBPbeta-/- compared with no further increase in wild-type mice. Because a deletion in the gene for C/EBPbeta reduces blood glucose and circulating FFA, it could be an important therapeutic target for the treatment of non-insulin-dependent diabetes and possibly obesity, based on designing antagonists that decrease C/EBPbeta activity. |