| First Author | Yi F | Year | 2012 |
| Journal | Stem Cells Dev | Volume | 21 |
| Issue | 13 | Pages | 2495-507 |
| PubMed ID | 22420587 | Mgi Jnum | J:323079 |
| Mgi Id | MGI:6843089 | Doi | 10.1089/scd.2011.0597 |
| Citation | Yi F, et al. (2012) Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev 21(13):2495-507 |
| abstractText | Mesenchymal stem cells (MSCs) are adult stem cells with a self-renewal and multipotent capability and express extensively in multitudinous tissues. We found that water channel aquaporin-5 (AQP5) is expressed in bone marrow-derived MSCs (BMMSCs) in the plasma membrane pattern. BMMSCs from AQP5(-/-) mice showed significantly lower plasma membrane water permeability than those from AQP5(+/+) mice. In characterizing the cultured BMMSCs from AQP5(-/-) and AQP5(+/+) mice, we found no obvious differences in morphology and proliferation between the 2 genotypes. However, the multiple differentiation capacity was significantly higher in AQP5(-/-) than AQP5(+/+) BMMSCs as revealed by representative staining by Oil Red O (adipogenesis); Alizarin Red S and alkaline phosphatase (ALP; osteogenesis); and type II collagen and Safranin O (chondrogenesis) after directional induction. Relative mRNA expression levels of 3 lineage differentiation markers, including PPARgamma2, C/EBPalpha, adipsin, collagen 1a, osteopontin, ALP, collagen 11a, collagen 2a, and aggrecan, were significantly higher in AQP5(-/-) -differentiating BMMSCs, supporting an increased differentiation capacity of AQP5(-/-) BMMSCs. Furthermore, a bone-healing process was accelerated in AQP5(-/-) mice in a drill-hole injury model. Mechanistic studies indicated a significantly lower apoptosis rate in AQP5(-/-) than AQP5(+/+) BMMSCs. Apoptosis inhibitor Z-VAD-FMK increased the differentiation capacity to a greater extent in AQP5(+/+) than AQP5(-/-) BMMSCs. We conclude that AQP5-mediated high plasma membrane water permeability enhances the apoptosis rate of differentiating BMMSCs, thus decreasing their differentiation capacity. These data implicate AQP5 as a novel determinant of differentiation of BMMSCs and therefore a new molecular target for regulating differentiation of BMMSCs during tissue repair and regeneration. |