|  Help  |  About  |  Contact Us

Publication : Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease.

First Author  Rockenstein EM Year  1995
Journal  J Biol Chem Volume  270
Issue  47 Pages  28257-67
PubMed ID  7499323 Mgi Jnum  J:100980
Mgi Id  MGI:3590122 Doi  10.1074/jbc.270.47.28257
Citation  Rockenstein EM, et al. (1995) Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem 270(47):28257-67
abstractText  Abnormal expression of human amyloid precursor protein (hAPP) gene products may play a critical role in Alzheimer's disease (AD). Recently, a transgenic model was established in which platelet-derived growth factor (PDGF) promoter-driven neuronal expression of an alternatively spliced hAPP minigene resulted in prominent AD-type neuropathology (Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., and Penniman, E. (1995) Nature 373, 523-527). Here we compared the levels and alternative splicing of APP transcripts in brain tissue of hAPP transgenic and nontransgenic mice and of humans with and without AD. PDGF-hAPP mice showed severalfold higher levels of total APP mRNA than did nontransgenic mice or humans, whereas their endogenous mouse APP mRNA levels were decreased. This resulted in a high ratio of mRNAs encoding mutated hAPP versus wild-type mouse APP. Modifications of hAPP introns 6, 7, and 8 in the PDGF-hAPP construct resulted in a prominent change in alternative splice site selection with transcripts encoding hAPP770 or hAPP751 being expressed at substantially higher levels than hAPP695 mRNA. Frontal cortex of humans with AD showed a subtle increase in the relative abundance of hAPP751 mRNA compared with normal controls. These data identify specific intron sequences that may contribute to the normal neuronspecific alternative splicing of APP pre-mRNA in vivo and support a causal role of hAPP gene products in the development of AD-type brain alterations.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression