|  Help  |  About  |  Contact Us

Publication : Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model.

First Author  Palma-Flores C Year  2023
Journal  J Mol Histol Volume  54
Issue  4 Pages  405-413
PubMed ID  37358754 Mgi Jnum  J:350714
Mgi Id  MGI:7664199 Doi  10.1007/s10735-023-10136-7
Citation  Palma-Flores C, et al. (2023) Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol 54(4):405-413
abstractText  Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the delta-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of beta-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression