|  Help  |  About  |  Contact Us

Publication : Long-Term-But Not Short-Term-Plasticity at the Mossy Fiber-CA3 Pyramidal Cell Synapse in Hippocampus Is Altered in M1/M3 Muscarinic Acetylcholine Receptor Double Knockout Mice.

First Author  Zheng F Year  2023
Journal  Cells Volume  12
Issue  14 PubMed ID  37508553
Mgi Jnum  J:339160 Mgi Id  MGI:7515313
Doi  10.3390/cells12141890 Citation  Zheng F, et al. (2023) Long-Term-But Not Short-Term-Plasticity at the Mossy Fiber-CA3 Pyramidal Cell Synapse in Hippocampus Is Altered in M1/M3 Muscarinic Acetylcholine Receptor Double Knockout Mice. Cells 12(14)
abstractText  Muscarinic acetylcholine receptors are well-known for their crucial involvement in hippocampus-dependent learning and memory, but the exact roles of the various receptor subtypes (M1-M5) are still not fully understood. Here, we studied how M1 and M3 receptors affect plasticity at the mossy fiber (MF)-CA3 pyramidal cell synapse. In hippocampal slices from M1/M3 receptor double knockout (M1/M3-dKO) mice, the signature short-term plasticity of the MF-CA3 synapse was not significantly affected. However, the rather unique NMDA receptor-independent and presynaptic form of long-term potentiation (LTP) of this synapse was much larger in M1/M3-deficient slices compared to wild-type slices in both field potential and whole-cell recordings. Consistent with its presynaptic origin, induction of MF-LTP strongly enhanced the excitatory drive onto single CA3 pyramidal cells, with the effect being more pronounced in M1/M3-dKO cells. In an earlier study, we found that the deletion of M2 receptors in mice disinhibits MF-LTP in a similar fashion, suggesting that endogenous acetylcholine employs both M1/M3 and M2 receptors to constrain MF-LTP. Importantly, such synergism was not observed for MF long-term depression (LTD). Low-frequency stimulation, which reliably induced LTD of MF synapses in control slices, failed to do so in M1/M3-dKO slices and gave rise to LTP instead. In striking contrast, loss of M2 receptors augmented LTD when compared to control slices. Taken together, our data demonstrate convergence of M1/M3 and M2 receptors on MF-LTP, but functional divergence on MF-LTD, with the net effect resulting in a well-balanced bidirectional plasticity of the MF-CA3 pyramidal cell synapse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

5 Bio Entities

0 Expression