First Author | Widder JD | Year | 2007 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 27 |
Issue | 4 | Pages | 762-8 |
PubMed ID | 17272743 | Mgi Jnum | J:150251 |
Mgi Id | MGI:3849961 | Doi | 10.1161/01.ATV.0000259298.11129.a2 |
Citation | Widder JD, et al. (2007) Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler Thromb Vasc Biol 27(4):762-8 |
abstractText | OBJECTIVE: Human endothelial cells use the multidrug resistance protein-1 (MRP1) to export glutathione disulfide (GSSG). This can promotes thiol loss during states of increased glutathione oxidation. We investigated how MRP1 modulates blood pressure and vascular function during angiotensin II-induced hypertension. METHODS AND RESULTS: Angiotensin II-induced hypertension altered vascular glutathione flux by increasing GSSG export and decreasing vascular levels of glutathione in wild-type (FVB) but not in MRP1-/- mice. Aortic endothelium-dependent vasodilatation was reduced in FVB after angiotensin II infusion, but unchanged in MRP1-/- mice. Aortic superoxide (O2*-) production and expression of several NADPH oxidase subunits were increased by angiotensin II in FVB. These effects were markedly blunted in MRP1-/- vessels. The increase in O2*- production in FVB vessels caused by angiotensin II was largely inhibited by L-NAME, suggesting eNOS uncoupling. Accordingly, aortic tetrahydrobiopterin and levels of NO were decreased by angiotensin II in FVB but were unchanged in MRP1-/-. Finally, the hypertension caused by angiotensin II was markedly blunted in MRP1-/- mice (137+/-4 versus 158+/-6 mm Hg). CONCLUSION: MRP1 plays a crucial role in the genesis of multiple vascular abnormalities that accompany hypertension and its presence is essential for the hypertensive response to angiotensin II. |