|  Help  |  About  |  Contact Us

Publication : Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium.

First Author  Cerniway RJ Year  2001
Journal  Am J Physiol Heart Circ Physiol Volume  281
Issue  4 Pages  H1751-8
PubMed ID  11557567 Mgi Jnum  J:72095
Mgi Id  MGI:2151723 Doi  10.1152/ajpheart.2001.281.4.H1751
Citation  Cerniway RJ, et al. (2001) Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol 281(4):H1751-8
abstractText  A(3) adenosine receptors (A(3)ARs) have been implicated in regulating mast cell function and in cardioprotection during ischemia-reperfusion injury. The physiological role of A(3)ARs is unclear due to the lack of widely available selective antagonists. Therefore, we examined mice with targeted gene deletion of the A(3)AR together with pharmacological studies to determine the role of A(3)ARs in myocardial ischemia-reperfusion injury. We evaluated the functional response to 15-min global ischemia and 30-min reperfusion in isovolumic Langendorff hearts from A(3)AR(-/-) and wild-type (A(3)AR(+/+)) mice. Loss of contractile function during ischemia was unchanged, but recovery of developed pressure in hearts after reperfusion was improved in A(3)AR(-/-) compared with wild-type hearts (80 +/- 3 vs. 51 +/- 3% at 30 min). Tissue viability assessed by efflux of lactate dehydrogenase was also improved in A(3)AR(-/-) hearts (4.5 +/- 1 vs. 7.5 +/- 1 U/g). The adenosine receptor antagonist BW-A1433 (50 microM) decreased functional recovery following ischemia in A(3)AR(-/-) but not in wild-type hearts. We also examined myocardial infarct size using an intact model with 30-min left anterior descending coronary artery occlusion and 24-h reperfusion. Infarct size was reduced by over 60% in A(3)AR(-/-) hearts. In summary, targeted deletion of the A(3)AR improved functional recovery and tissue viability during reperfusion following ischemia. These data suggest that activation of A(3)ARs contributes to myocardial injury in this setting in the rodent. Since A(3)ARs are thought to be present on resident mast cells in the rodent myocardium, we speculate that A(3)ARs may have proinflammatory actions that mediate the deleterious effects of A(3)AR activation during ischemia-reperfusion injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression