|  Help  |  About  |  Contact Us

Publication : Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance.

First Author  Katori S Year  2017
Journal  J Neurosci Volume  37
Issue  32 Pages  7682-7699
PubMed ID  28747385 Mgi Jnum  J:278254
Mgi Id  MGI:6323319 Doi  10.1523/JNEUROSCI.3123-16.2017
Citation  Katori S, et al. (2017) Spinal RacGAP alpha-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance. J Neurosci 37(32):7682-7699
abstractText  In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) alpha-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific alpha-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed alpha-chimaerin. We propose that spinal alpha-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that alpha-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific alpha-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that alpha-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

21 Bio Entities

0 Expression