|  Help  |  About  |  Contact Us

Publication : Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia.

First Author  Bido S Year  2015
Journal  Ann Clin Transl Neurol Volume  2
Issue  6 Pages  662-78
PubMed ID  26125041 Mgi Jnum  J:277305
Mgi Id  MGI:6331027 Doi  10.1002/acn3.202
Citation  Bido S, et al. (2015) Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia. Ann Clin Transl Neurol 2(6):662-78
abstractText  OBJECTIVE: Recent findings have shown that pharmacogenetic manipulations of the Ras-ERK pathway provide a therapeutic means to tackle l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID). First, we investigated whether a prolonged l-DOPA treatment differentially affected ERK signaling in medium spiny neurons of the direct pathway (dMSNs) and in cholinergic aspiny interneurons (ChIs) and assessed the role of Ras-GRF1 in both subpopulations. Second, using viral-assisted technology, we probed Ras-GRF1 and Ras-GRF2 as potential targets in this pathway. We investigated how selective blockade of striatal Ras-GRF1 or Ras-GRF2 expression impacted on LID (induction, maintenance, and reversion) and its neurochemical correlates. METHODS: We used both Ras-GRF1 knockout mice and lentiviral vectors (LVs) delivering short-hairpin RNA sequences (shRNAs) to obtain striatum-specific gene knockdown of Ras-GRF1 and Ras-GRF2. The consequences of these genetic manipulations were evaluated in the 6-hydroxydopamine mouse model of Parkinson's disease. Escalating doses of l-DOPA were administered and then behavioral analysis with immunohistochemical assays and in vivo microdialysis were performed. RESULTS: Ras-GRF1 was found essential in controlling ERK signaling in dMSNs, but its ablation did not prevent ERK activation in ChIs. Moreover, striatal injection of LV-shRNA/Ras-GRF1 attenuated dyskinesia development and ERK-dependent signaling, whereas LV-shRNA/Ras-GRF2 was without effect, ruling out the involvement of Ras-GRF2 in LID expression. Accordingly, Ras-GRF1 but not Ras-GRF2 striatal gene-knockdown reduced l-DOPA-induced GABA and glutamate release in the substantia nigra pars reticulata, a neurochemical correlate of dyskinesia. Finally, inactivation of Ras-GRF1 provided a prolonged anti-dyskinetic effect for up to 7 weeks and significantly attenuated symptoms in animals with established LID. INTERPRETATION: Our results suggest that Ras-GRF1 is a promising target for LID therapy based on Ras-ERK signaling inhibition in the striatum.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression