First Author | Inoue Y | Year | 2014 |
Journal | J Immunol | Volume | 192 |
Issue | 9 | Pages | 4342-51 |
PubMed ID | 24696236 | Mgi Jnum | J:209962 |
Mgi Id | MGI:5569181 | Doi | 10.4049/jimmunol.1302039 |
Citation | Inoue Y, et al. (2014) NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes. J Immunol 192(9):4342-51 |
abstractText | Inflammation plays a key role in the pathophysiology of hepatic ischemia-reperfusion (I/R) injury. However, the mechanism by which hepatic I/R induces inflammatory responses remains unclear. Recent evidence indicates that a sterile inflammatory response triggered by I/R is mediated through a multiple-protein complex called the inflammasome. Therefore, we investigated the role of the inflammasome in hepatic I/R injury and found that hepatic I/R stimuli upregulated the inflammasome-component molecule, nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), but not apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). NLRP3(-/-) mice, but not ASC(-/-) and caspase-1(-/-) mice, had significantly less liver injury after hepatic I/R. NLRP3(-/-) mice showed reduced inflammatory responses, reactive oxygen species production, and apoptosis in I/R liver. Notably, infiltration of neutrophils, but not macrophages, was markedly inhibited in the I/R liver of NLRP3(-/-) mice. Bone marrow transplantation experiments showed that NLRP3 not only in bone marrow-derived cells, but also in non-bone marrow-derived cells contributed to liver injury after I/R. In vitro experiments revealed that keratinocyte-derived chemokine-induced activation of heterotrimeric G proteins was markedly diminished. Furthermore, NLRP3(-/-) neutrophils decreased keratinocyte-derived chemokine-induced concentrations of intracellular calcium elevation, Rac activation, and actin assembly formation, thereby resulting in impaired migration activity. Taken together, NLRP3 regulates chemokine-mediated functions and recruitment of neutrophils, and thereby contributes to hepatic I/R injury independently of inflammasomes. These findings identify a novel role of NLRP3 in the pathophysiology of hepatic I/R injury. |