First Author | Fukuda MN | Year | 2002 |
Journal | Biochim Biophys Acta | Volume | 1573 |
Issue | 3 | Pages | 382-7 |
PubMed ID | 12417422 | Mgi Jnum | J:80105 |
Mgi Id | MGI:2429806 | Doi | 10.1016/s0304-4165(02)00407-5 |
Citation | Fukuda MN, et al. (2002) In vivo role of alpha-mannosidase IIx: ineffective spermatogenesis resulting from targeted disruption of the Man2a2 in the mouse. Biochim Biophys Acta 1573(3):382-7 |
abstractText | Alpha-mannosidase IIx (MX) is an enzyme closely related to the Golgi N-glycan processing enzyme alpha-mannosidase II (MII). The enzymatic activity of MX in vitro is minimal. Therefore, the in vivo role of MX in N-glycan processing is as yet unclear. The targeted disruption of the gene encoding MX in the mouse resulted in an obvious phenotype, i.e., MX-deficient males were found to be infertile. Testes from homozygous mutant male mice are smaller than those from wild-type or heterozygous littermates. Histology of the MX null mouse testis showed significant reduction of spermatogenic cells in the seminiferous tubules. Electron microscopy showed that prominent intercellular spaces surround MX-deficient spermatogenic cells, suggesting a failure of germ cell adhesion to Sertoli cells. Quantitative structural analyses of N-glycans from wild-type and MX-deficient mouse testis showed that wild-type testes contain GlcNAc-terminated complex type N-glycans, while they are significantly reduced in MX-deficient mutant testis. An in vitro assay for adhesion of spermatogenic cells to Sertoli cells was carried out. By testing the effect of each purified N-glycan oligosaccharide, it was demonstrated that a GlcNAc-terminated tri-antennary, fucosylated N-glycan has an activity on the adhesion between germ cells and Sertoli cells. Thus, the targeted disruption of the gene encoding MX uncovered a novel carbohydrate recognition system in a biologically important process, spermatogenesis. |