|  Help  |  About  |  Contact Us

Publication : Retinal input instructs alignment of visual topographic maps.

First Author  Triplett JW Year  2009
Journal  Cell Volume  139
Issue  1 Pages  175-85
PubMed ID  19804762 Mgi Jnum  J:157312
Mgi Id  MGI:4430651 Doi  10.1016/j.cell.2009.08.028
Citation  Triplett JW, et al. (2009) Retinal input instructs alignment of visual topographic maps. Cell 139(1):175-85
abstractText  Sensory information is represented in the brain in the form of topographic maps, in which neighboring neurons respond to adjacent external stimuli. In the visual system, the superior colliculus receives topographic projections from the retina and primary visual cortex (V1) that are aligned. Alignment may be achieved through the use of a gradient of shared axon guidance molecules, or through a retinal-matching mechanism in which axons that monitor identical regions of visual space align. To distinguish between these possibilities, we take advantage of genetically engineered mice that we show have a duplicated functional retinocollicular map but only a single map in V1. Anatomical tracing revealed that the corticocollicular projection bifurcates to align with the duplicated retinocollicular map in a manner dependent on the normal pattern of spontaneous activity during development. These data suggest a general model in which convergent maps use coincident activity patterns to achieve alignment.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression