|  Help  |  About  |  Contact Us

Publication : The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system.

First Author  Vetter DE Year  2007
Journal  Proc Natl Acad Sci U S A Volume  104
Issue  51 Pages  20594-9
PubMed ID  18077337 Mgi Jnum  J:130585
Mgi Id  MGI:3771935 Doi  10.1073/pnas.0708545105
Citation  Vetter DE, et al. (2007) The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system. Proc Natl Acad Sci U S A 104(51):20594-9
abstractText  Although homomeric channels assembled from the alpha9 nicotinic acetylcholine receptor (nAChR) subunit are functional in vitro, electrophysiological, anatomical, and molecular data suggest that native cholinergic olivocochlear function is mediated via heteromeric nAChRs composed of both alpha9 and alpha10 subunits. To gain insight into alpha10 subunit function in vivo, we examined olivo cochlear innervation and function in alpha10 null-mutant mice. Electrophysiological recordings from postnatal (P) days P8-9 inner hair cells revealed ACh-gated currents in alpha10(+/+) and alpha10(+/-) mice, with no detectable responses to ACh in alpha10(-/-) mice. In contrast, a proportion of alpha10(-/-) outer hair cells showed small ACh-evoked currents. In alpha10(-/-) mutant mice, olivocochlear fiber stimulation failed to suppress distortion products, suggesting that the residual alpha9 homomeric nAChRs expressed by outer hair cells are unable to transduce efferent signals in vivo. Finally, alpha10(-/-) mice exhibit both an abnormal olivocochlear morphology and innervation to outer hair cells and a highly disorganized efferent innervation to the inner hair cell region. Our results demonstrate that alpha9(-/-) and alpha10(-/-) mice have overlapping but nonidentical phenotypes. Moreover, alpha10 nAChR subunits are required for normal olivocochlear activity because alpha9 homomeric nAChRs do not support maintenance of normal olivocochlear innervation or function in alpha10(-/-) mutant mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression