|  Help  |  About  |  Contact Us

Publication : Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation.

First Author  Lai CY Year  2014
Journal  Stem Cells Volume  32
Issue  7 Pages  1929-42
PubMed ID  24510783 Mgi Jnum  J:260884
Mgi Id  MGI:6152566 Doi  10.1002/stem.1670
Citation  Lai CY, et al. (2014) Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation. Stem Cells 32(7):1929-42
abstractText  Hematopoietic cell transplantation has proven beneficial for various intractable diseases, but it remains unclear how hematopoietic stem/progenitor cells (HSPCs) home to the bone marrow (BM) microenvironment, initiate hematopoietic reconstitution, and maintain life-long hematopoiesis. The use of newly elucidated molecular determinants for overall HSPC engraftment should benefit patients. Here, we report that modification of C-X-C chemokine receptor type 4 (Cxcr4) signaling in murine HSPCs does not significantly affect initial homing/lodging events, but leads to alteration in subsequent BM repopulation kinetics, with observations confirmed by both gain- and loss-of-function approaches. By using C-terminal truncated Cxcr4 as a gain-of-function effector, we demonstrated that signal augmentation likely led to favorable in vivo repopulation of primitive cell populations in BM. These improved features were correlated with enhanced seeding efficiencies in stromal cell cocultures and altered ligand-mediated phosphorylation kinetics of extracellular signal-regulated kinases observed in Cxcr4 signal-augmented HSPCs in vitro. Unexpectedly, however, sustained signal enhancement even with wild-type Cxcr4 overexpression resulted in impaired peripheral blood (PB) reconstitution, most likely by preventing release of donor hematopoietic cells from the marrow environment. We thus conclude that timely regulation of Cxcr4/CXCR4 signaling is key in providing donor HSPCs with enhanced repopulation potential following transplantation, whilst preserving the ability to release HSPC progeny into PB for improved transplantation outcomes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression