|  Help  |  About  |  Contact Us

Publication : Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication.

First Author  Zhao H Year  2012
Journal  Mol Cell Biol Volume  32
Issue  8 Pages  1421-32
PubMed ID  22331465 Mgi Jnum  J:183801
Mgi Id  MGI:5319281 Doi  10.1128/MCB.06721-11
Citation  Zhao H, et al. (2012) Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication. Mol Cell Biol 32(8):1421-32
abstractText  Cyclin-dependent kinase 1 (CDK1) inhibitory phosphorylation controls the onset of mitosis and is essential for the checkpoint pathways that prevent the G(2)- to M-phase transition in cells with unreplicated or damaged DNA. To address whether CDK2 inhibitory phosphorylation plays a similar role in cell cycle regulation and checkpoint responses at the start of the S phase, we constructed a mouse strain in which the two CDK2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, were changed to alanine and phenylalanine, respectively (CDK2AF). This approach showed that inhibitory phosphorylation of CDK2 had a major role in controlling cyclin E-associated kinase activity and thus both determined the timing of DNA replication in a normal cell cycle and regulated centrosome duplication. Further, DNA damage in G(1) CDK2AF cells did not downregulate cyclin E-CDK2 activity when the CDK inhibitor p21 was also knocked down. We were surprised to find that this was insufficient to cause cells to bypass the checkpoint and enter the S phase. This led to the discovery of two previously unrecognized pathways that control the activity of cyclin A at the G(1) DNA damage checkpoint and may thereby prevent S-phase entry even when cyclin E-CDK2 activity is deregulated.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression