|  Help  |  About  |  Contact Us

Publication : Embryonic stem cell differentiation requires full length Chd1.

First Author  Piatti P Year  2015
Journal  Sci Rep Volume  5
Pages  8007 PubMed ID  25620209
Mgi Jnum  J:231724 Mgi Id  MGI:5774781
Doi  10.1038/srep08007 Citation  Piatti P, et al. (2015) Embryonic stem cell differentiation requires full length Chd1. Sci Rep 5:8007
abstractText  The modulation of chromatin dynamics by ATP-dependent chromatin remodeling factors has been recognized as an important mechanism to regulate the balancing of self-renewal and pluripotency in embryonic stem cells (ESCs). Here we have studied the effects of a partial deletion of the gene encoding the chromatin remodeling factor Chd1 that generates an N-terminally truncated version of Chd1 in mouse ESCs in vitro as well as in vivo. We found that a previously uncharacterized serine-rich region (SRR) at the N-terminus is not required for chromatin assembly activity of Chd1 but that it is subject to phosphorylation. Expression of Chd1 lacking this region in ESCs resulted in aberrant differentiation properties of these cells. The self-renewal capacity and ESC chromatin structure, however, were not affected. Notably, we found that newly established ESCs derived from Chd1(Delta2/Delta2) mutant mice exhibited similar differentiation defects as in vitro generated mutant ESCs, even though the N-terminal truncation of Chd1 was fully compatible with embryogenesis and post-natal life in the mouse. These results underscore the importance of Chd1 for the regulation of pluripotency in ESCs and provide evidence for a hitherto unrecognized critical role of the phosphorylated N-terminal SRR for full functionality of Chd1.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression