First Author | Luedde T | Year | 2005 |
Journal | J Clin Invest | Volume | 115 |
Issue | 4 | Pages | 849-59 |
PubMed ID | 15776110 | Mgi Jnum | J:97326 |
Mgi Id | MGI:3575227 | Doi | 10.1172/JCI23493 |
Citation | Luedde T, et al. (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 115(4):849-859 |
abstractText | The inhibitor of NF-kappaB (I-kappaB) kinase (IKK) complex consists of 3 subunits, IKK1, IKK2, and NF-kappaB essential modulator (NEMO), and is involved in the activation of NF-kappaB by various stimuli. IKK2 or NEMO constitutive knockout mice die during embryogenesis as a result of massive hepatic apoptosis. Therefore, we examined the role of IKK2 in TNF-induced apoptosis and ischemia/reperfusion (I/R) injury in the liver by using conditional knockout mice. Hepatocyte-specific ablation of IKK2 did not lead to impaired activation of NF-kappaB or increased apoptosis after TNF-alpha stimulation whereas conditional NEMO knockout resulted in complete block of NF-kappaB activation and massive hepatocyte apoptosis. In a model of partial hepatic I/R injury, mice lacking IKK2 in hepatocytes displayed significantly reduced liver necrosis and inflammation than wild-type mice. AS602868, a novel chemical inhibitor of IKK2, protected mice from liver injury due to I/R without sensitizing them toward TNF-induced apoptosis and could therefore emerge as a new pharmacological therapy for liver resection, hemorrhagic shock, or transplantation surgery. |