|  Help  |  About  |  Contact Us

Publication : Liver haploinsufficiency of RuvBL1 causes hepatic insulin resistance and enhances hepatocellular carcinoma progression.

First Author  Mello T Year  2020
Journal  Int J Cancer Volume  146
Issue  12 Pages  3410-3422
PubMed ID  31721195 Mgi Jnum  J:303942
Mgi Id  MGI:6514542 Doi  10.1002/ijc.32787
Citation  Mello T, et al. (2020) Liver haploinsufficiency of RuvBL1 causes hepatic insulin resistance and enhances hepatocellular carcinoma progression. Int J Cancer 146(12):3410-3422
abstractText  RuvBL1 is an AAA+ ATPase whose expression in hepatocellular carcinoma (HCC) correlates with a poor prognosis. In vitro models suggest that targeting RuvBL1 could be an effective strategy against HCC. However, the role of RuvBL1 in the onset and progression of HCC remains unknown. To address this question, we developed a RuvBL1(hep+/-) mouse model and evaluated the outcome of DEN-induced liver carcinogenesis up to 12 months of progression. We found that RuvBL1 haploinsufficiency initially delayed the onset of liver cancer, due to a reduced hepatocyte turnover in RuvBL1(hep+/-) mice. However, RuvBL1(hep+/-) mice eventually developed HCC nodules that, with aging, grew larger than in the control mice. Moreover, RuvBL1(hep+/-) mice developed hepatic insulin resistance and impaired glucose homeostasis. We could determine that RuvBL1 regulates insulin signaling through the Akt/mTOR pathway in liver physiology in vivo as well as in normal hepatocytic and HCC cells in vitro. Whole transcriptome analysis of mice livers confirmed the major role of RuvBL1 in the regulation of hepatic glucose metabolism. Finally, RuvBL1 expression was found significantly correlated to glucose metabolism and mTOR signaling by bioinformatic analysis of human HCC sample from the publicly available TGCA database. These data uncover a role of RuvBL1 at the intersection of liver metabolism, hepatocyte proliferation and HCC development, providing a molecular rationale for its overexpression in liver cancer.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression