|  Help  |  About  |  Contact Us

Publication : Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development.

First Author  Camilleri ET Year  2018
Journal  J Biol Chem Volume  293
Issue  49 Pages  19001-19011
PubMed ID  30327434 Mgi Jnum  J:272809
Mgi Id  MGI:6268552 Doi  10.1074/jbc.RA118.003909
Citation  Camilleri ET, et al. (2018) Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem 293(49):19001-19011
abstractText  Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

0 Expression