First Author | Yao B | Year | 2009 |
Journal | Hypertension | Volume | 54 |
Issue | 5 | Pages | 1077-83 |
PubMed ID | 19770404 | Mgi Jnum | J:281377 |
Mgi Id | MGI:6377798 | Doi | 10.1161/HYPERTENSIONAHA.109.137174 |
Citation | Yao B, et al. (2009) Intrarenal dopamine attenuates deoxycorticosterone acetate/high salt-induced blood pressure elevation in part through activation of a medullary cyclooxygenase 2 pathway. Hypertension 54(5):1077-83 |
abstractText | Locally produced dopamine in the renal proximal tubule inhibits salt and fluid reabsorption, and a dysfunctional intrarenal dopaminergic system has been reported in essential hypertension and experimental hypertension models. Using catechol-O-methyl-transferase knockout (COMT(-/-)) mice, which have increased renal dopamine because of deletion of the major renal dopamine-metabolizing enzyme, we investigated the effect of intrarenal dopamine on the development of hypertension in the deoxycorticosterone acetate/high-salt (DOCA/HS) model. DOCA/HS led to significant increases in systolic blood pressure in wild-type mice (from 115+/-2 to 153+/-4 mm Hg), which was significantly attenuated in COMT(-/-) mice (from 114+/-2 to 135+/-3 mm Hg). In DOCA/HS COMT(-/-) mice, the D1-like receptor antagonist SCH-23390 increased systolic blood pressure (156+/-2 mm Hg). DOCA/HS COMT(-/-) mice also exhibited more urinary sodium excretion (COMT(-/-) versus wild-type: 3038+/-430 versus 659+/-102 micromol/L per 24 hours; P<0.01). Furthermore, DOCA/HS-induced renal oxidative stress was significantly attenuated in COMT(-/-) mice. COX-2-derived prostaglandins in the renal medulla promote sodium excretion, and dopamine stimulates medullary prostaglandin production. Renal medullary COX-2 expression and urinary prostaglandin E2 excretion were significantly higher in COMT(-/-) than in wild-type mice after DOCA/HS treatment. In DOCA/HS-treated COMT(-/-) mice, the COX-2 inhibitor SC-58236 reduced urinary sodium and prostaglandin E(2) excretion and increased systolic blood pressure (153+/-2 mm Hg). These studies indicate that an activated renal dopaminergic system attenuates the development of hypertension, at least in large part through activating medullary COX-2 expression/activity, and also decreases oxidative stress resulting from DOCA/HS. |