First Author | Liu B | Year | 2005 |
Journal | Nat Med | Volume | 11 |
Issue | 7 | Pages | 780-5 |
PubMed ID | 15980864 | Mgi Jnum | J:99634 |
Mgi Id | MGI:3583382 | Doi | 10.1038/nm1266 |
Citation | Liu B, et al. (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780-5 |
abstractText | Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24-/- mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24-/- MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging. |