First Author | Kovacs WJ | Year | 2012 |
Journal | Biochim Biophys Acta | Volume | 1821 |
Issue | 6 | Pages | 895-907 |
PubMed ID | 22441164 | Mgi Jnum | J:185169 |
Mgi Id | MGI:5427554 | Doi | 10.1016/j.bbalip.2012.02.011 |
Citation | Kovacs WJ, et al. (2012) Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta 1821(6):895-907 |
abstractText | Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Websterx129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARalpha. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARalpha activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARalpha-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARalpha activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARalpha pathway inductions. |