|  Help  |  About  |  Contact Us

Publication : Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor.

First Author  Chen J Year  2008
Journal  Am J Physiol Renal Physiol Volume  295
Issue  3 Pages  F818-25
PubMed ID  18632796 Mgi Jnum  J:148637
Mgi Id  MGI:3846011 Doi  10.1152/ajprenal.90253.2008
Citation  Chen J, et al. (2008) Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor. Am J Physiol Renal Physiol 295(3):F818-25
abstractText  A high-NaCl diet induces renal medullary cyclooxygenase (COX)2 expression, and selective intramedullary infusion of a COX2 inhibitor increases blood pressure in rats on a high-salt diet. The present study characterized the specific prostanoid contributing to the antihypertensive effect of COX2. C57BL/6J mice placed on a high-NaCl diet exhibited increased medullary COX2 and microsomal prostaglandin E synthase1 (mPGES1) expression as determined by immunoblot and real-time PCR. Cytosolic prostaglandin E synthase and prostacyclin synthase were not induced by the high-salt diet. Immunofluorescence showed mPGES1 in collecting ducts and interstitial cells. High salt increased renal medullary PGE(2) as determined by gas chromatography/negative ion chemical ionization mass spectrometry. The effect of direct intramedullary PGE(2) infusion was examined in anesthetized uninephrectomized mice. Intramedullary PGE(2) infusion (10 ng/h) increased urine volume (from 3.3 +/- 0.6 to 9.5 +/- 1.6 mul/min) and urine sodium excretion (0.11 +/- 0.02 to 0.32 +/- 0.05 mueq/min). To determine which E-prostanoid (EP) receptor(s) mediated PGE(2)- dependent natriuresis, EP-selective prostanoids were infused. The EP(2) agonist butaprost produced natriuresis (from 0.06 +/- 0.02 to 0.32 +/- 0.05 mueq/min). The natriuretic effect of intramedullary PGE(2) or butaprost was abolished in EP2-deficient mice, which exhibit NaCl-dependent hypertension. In conclusion, a high-salt diet increases renal medullary COX2 and mPGES1 expression, and increases renal medullary PGE(2) synthesis. Renal medullary PGE(2) promotes renal sodium excretion via the EP2 receptor, thereby maintaining normotension in the setting of high salt intake.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression